Orthogonally additive sums of powers of linear functionals

نویسندگان

چکیده

Let E be a vector lattice, $$\lambda _1,\lambda _2,\ldots ,\lambda _k$$ scalars and $$\varphi _1,\ldots ,\varphi pairwise independent regular linear functionals on E. We show that if $$k<m$$ then $$\sum _{j=1}^k\lambda _j\varphi _j^m$$ is orthogonally additive only _j$$ or $$-\varphi lattice homomorphism for each j, $$1\le j\le k$$ . Moreover, $$m\ge 2$$ , we provide an example to this result does not extend the case where $$k=m$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Set Functions as Linear Functionals

We discuss the connection of additive set functions to dual function spaces by means of integrals. Isometrical isomorphisms are presented between: a) bounded contents and the dual of uniformly approximable functions, b) charges on Baire algebras and the duals of bounded, continuous functions over A-topological spaces, c) Hewitt measures on Baire σ-algebras and the duals of continuous functions ...

متن کامل

Decomposition of quantics in sums of powers of linear forms

Symmetric tensors of order larger than two arise more and more often in signal and image processing and automatic control, because of the recent use of High-Order Statistics (HOS). However, very few special purpose tools are at disposal for manipulating such objects in engineering problems. In this paper, we focus on the decomposition of a symmetric tensor into a sum of simpler ones, and links ...

متن کامل

Linear algebra and the sums of powers of integers

A general framework based on linear algebra is presented to obtain old and new polynomial expressions for the sums of powers of integers. This framework uses changes of polynomial basis, infinite lower triangular matrices and finite differences.

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

Sums of powers via integration

Sum of powers 1 + · · · + n, with n, p ∈ N and n ≥ 1, can be expressed as a polynomial function of n of degree p + 1. Such representations are often called Faulhaber formulae. A simple recursive algorithm for computing coefficients of Faulhaber formulae is presented. The correctness of the algorithm is proved by giving a recurrence relation on Faulhaber formulae.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2022

ISSN: ['0003-889X', '1420-8938']

DOI: https://doi.org/10.1007/s00013-021-01697-8